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ARTICLE INFO ABSTRACT
Keywords: Endurance exercise training promotes a protective phenotype in skeletal muscle known as exercise pre-
Exercise preconditioning conditioning. Exercise preconditioning protects muscle fibers against a variety of threats including inactivity-

Renin-angiotensin system
Skeletal muscle disuse atrophy
Skeletal muscle

induced muscle atrophy. The mechanism(s) responsible for exercise preconditioning remain unknown and are
explored in these experiments. Specifically, we investigated the impact of endurance exercise training on key
components of the renin-angiotensin system (RAS). The RAS was targeted because activation of the classical axis
of the RAS pathway via angiotensin II type I receptors (AT1Rs) promotes muscle atrophy whereas activation of the
non-classical RAS axis via Mas receptors (MasRs) inhibits the atrophic signaling of the classical RAS pathway.
Guided by prior studies, we hypothesized that an exercise-induced decrease in AT1Rs and/or increases in MasRs
in skeletal muscle fibers is a potential mechanism responsible for exercise preconditioning. Following endurance
exercise training in rats, we examined the abundance of AT1Rs and MasRs in both locomotor and respiratory
muscles. Our results indicate that endurance exercise training does not alter the protein abundance of AT1Rs or
MasRs in muscle fibers from the diaphragm, plantaris, and soleus muscles compared to sedentary controls (p >
0.05). Furthermore, fluorescent angiotensin II (AngIl) binding analyses confirm our results that exercise pre-
conditioning does not alter the protein abundance of AT1Rs in the diaphragm, plantaris, and soleus (p > 0.05).
This study confirms that exercise-induced changes in RAS receptors are not a key mechanism that contributes to
the beneficial effects of exercise preconditioning in skeletal muscle fibers.

the renin-angiotensin system (RAS) also contribute to exer-
cise-preconditioning.” ' However, this prediction has received limited
attention, and this forms the rationale for the current experiments.

The RAS system consists of 2 signaling arms identified as the classical
and non-classical RAS pathways. Activation of the classical RAS pathway
occurs by stimulation of the angiotensin II type I receptor (AT1Rs);
activation of the classical RAS pathway in muscle fibers promotes both
oxidative stress and accelerated proteolysis, leading to fiber atrophy.'? ¢
In contrast, activation of the non-classical RAS pathway, via stimulation
of the Mas receptor (MasRs), inhibits signaling through the classical RAS
pathway.'”*'® Previous work has implicated the role of the RAS signaling
pathway in inactivity-induced muscle atrophy, whereby pharmacological
inhibitors of AT1Rs and/or MasRs activation by ligand binding protects
muscle from inactivity-induced muscle wasting.'>?° Therefore, in the-
ory, an exercise-induced decrease in AT1Rs and/or increased abundance
of MasRs can contribute to exercise preconditioning and confer

Introduction

It is established that endurance exercise training results in numerous
biochemical adaptations in skeletal muscle fibers. Collectively, these
exercise-induced changes result in a protective phenotype in muscle that
is labeled “exercise-preconditioning”. Indeed, abundant evidence reveals
that exercise preconditioning defends against several threats to skeletal
muscle including exercise-induced oxidative stress, cancer
chemotherapy-induced muscle wasting, and inactivity-induced muscle
atrophy.'™® Research investigating molecular mechanism(s) responsible
for exercise preconditioning is an ongoing area of research and many
questions remain unanswered. In this regard, evidence indicates that
increases in both muscle antioxidant capacity and/or heat shock proteins
are potential contributors to exercise preconditioning.®® In addition, it is
also feasible that exercise-induced alterations in signaling components of
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Abbreviations

Angl-7 Angiotensin 1-7

Angll Angiotensin II

AT1Rs  Angiotensin II type I receptors
CON Sedentary control

EX Endurance exercise trained
MasR Mas receptors

RAS Renin-angiotensin system
VOomax Maximal oxygen consumption

protection against inactivity-induced muscle atrophy. To date, there are
only a few published reports that have investigated the impact of exercise
on AT1Rs and MasRs in skeletal muscle.?' % Unfortunately, these studies
suffer from major experimental limitations including the use bundles of
muscle tissue and non-specific antibodies. Specifically, the antibodies
used in these experiments were purchased from Santa Cruz Biotech-
nology which have been shown to have non-specific binding in knockout
models of AT1R.?>*?° Thus, additional research is required to establish if
exercise training alters the abundance of AT1Rs and MasRs in skeletal
muscle fibers. Therefore, to determine if exercise-induced changes in key
components of the RAS are a potential contributor to
exercise-preconditioning, we used a rigorous experimental approach to
test the hypothesis that endurance exercise training decreases the
abundance of AT1Rs and increases the abundance of MasRs in skeletal
muscle fibers.

Materials and methods
Experimental animals

Adult (around 4-6 months old) female Sprague-Dawley rats were
used in these experiments. These experiments were approved by the
University of Florida Animal Care and Use Committee. All animals were
housed at the University of Florida Animal Care Services Center ac-
cording to guidelines set forth by the Institute of Animal Care and Use
Committee. The experimental animals were maintained on a 12:12 h
light-dark cycle with food and water provided ad libitum throughout the
experimental protocol. This study meets the ethical standards of the In-
ternational Journal of Sports Medicine.?®

Experimental design

To test our experimental hypothesis, we used a well-established ani-
mal model of endurance exercise training and studied both respiratory
and locomotor skeletal muscles. Importantly, to rigorously test our hy-
pothesis, we studied isolated single muscle fibers and used a multi-
technique approach to identify the abundance of AT1Rs and MasRs.
Specifically, to study the abundance of both AT1Rs and MasRs in muscle,
we isolated individual muscle fibers from 3 skeletal muscles (i.e., dia-
phragm, plantaris, and soleus). The diaphragm was selected for analysis
because RAS signaling plays a required role in ventilator-induced dia-
phragm atrophy.'®?%%” The soleus and plantaris muscles were studied
because these hindlimb muscles atrophy in response to atrophic stimuli
such as angiotensin II (Angl)?® and these muscles differ in fiber type
composition; the soleus muscle in rats is dominated by slow, type I fibers
whereas the plantaris muscle contains primarily fast, type II fibers.?° On
the basis of a report indicating that endurance exercise training lowers
the AT1Rs abundance in the heart,>° we formulated the hypothesis that
endurance exercise training results in both a decrease in AT1Rs and an
increase in MasRs in diaphragm and locomotor skeletal muscle fibers. A
brief description of the experimental design and general methods
follows.
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Fig. 1. Experimental Design. Groups: 1) sedentary control and 2) endurance
exercise training n 10/group. CON control; EX endurance exer-
cise training.

Female rats (around 4-6 months old) were randomly assigned to
experimental groups consisting of: 1) Sedentary Control (CON); or 2)
Endurance Exercise Training (EX) (n = 10/group) Fig. 1A. CON animals
remained sedentary in their cages and were not exposed to endurance
exercise training throughout the duration of the experiments.

Endurance exercise treadmill training protocol

Animals in the EX group performed 5 consecutive days of progressive
habituation to treadmill running prior to endurance exercise training
(Fig. 1B). Following 2 days of rest, each animal performed an endurance
exercise training program consisting of 10 total days of treadmill exercise
(60 min per day) at a predicted work rate of 70% maximal oxygen con-
sumption (VO2may). Based on previous work describing the VOypyax and
oxygen cost of treadmill exercise in untrained rats, 70% VOgmax in un-
trained animals corresponds to treadmill settings of 30 m/min at 0%
grade.®! Each exercise training session consisted of 4 separate 15-min
intervals of treadmill running with 3 min rest between each interval
for a total of 60 min of endurance exercise. The EX group were exercise
trained for 5 consecutive days with 2 days of rest followed by additional 5
consecutive days of training. Importantly, this endurance exercise
training protocol has shown to result in a diaphragmatic phenotype that
is protected against the detrimental effects of prolonged mechanical
ventilation.* In addition, exercise preconditioning has shown to atten-
uate skeletal muscle atrophy after hindlimb unloading.>3*33
Twenty-four hours after the animal's last bout of endurance exercise
training, animals were sacrificed for tissue harvest and muscle sections of
the costal diaphragm, soleus, and plantaris muscles were collected,
frozen in liquid nitrogen, and stored in —80 °C for subsequent analysis.

Single fiber isolation

To eliminate the risk of contamination of other tissue types that may
be abundant in RAS proteins (i.e., vascular tissue), individual muscle
fibers (—~3 mm in length) were isolated from bundles of costal diaphragm,
soleus, and plantaris muscles as previously described by Deminice et al.>*
Briefly, bundles of muscle fibers were placed in a relax solution (in mM:
100 KCl, 20 imidazole, 4 ATP, 2 EGTA, and 7 MgCly; pH adjusted to 7.0
using KOH) on ice where ~80 individual muscle fibers were carefully
isolated under a stereomicroscope and placed into Eppendorf tubes
prepared for Western blot analysis.
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Fig. 2. Citrate synthase (CS) was measured via Western blot as a biomarker of mitochondrial volume. Compared to sedentary control (CON), endurance exercise
training (EX) significantly increased citrate synthase protein abundance in the A) diaphragm (p = 0.0168), B) plantaris muscles (p < 0.0001), and C) soleus (p <
0.0001). Values are mean + SD. Data given * significant difference between CON and EX (p < 0.05). CON = Sedentary control; EX = Endurance exercise training.

Western blot analysis

Western blot samples were prepared as followed. Around 80 muscle
fibers were placed in Eppendorf tubes containing Tris-EDTA homogeni-
zation buffer (5 mM Tris, 5 mM EDTA at a pH of 7.4). Protease inhibitor
cocktail was then added at 1:20 vol/vol (Sigma-Aldrich, St. Louis MO)
with 1% Triton X-100. Laemmli sample buffer (1610747, Bio Rad Her-
cules, CA) containing 5% dithiothreitol was added to Western blot
samples. Single fiber Western blot samples then completed 3 freeze/thaw
cycles and homogenized with a small pestle. After, the muscle fiber
samples were boiled for 5 min and single fiber homogenate samples were
cooled on ice and loaded on a 4%-20% gradient Criterion TGX gels (Bio-
Rad) and electrophoresed for 60 min at 150 V. After completion of
electrophoresis, proteins were then transferred to a LF-PVDF membrane
(Millipore Burlington, MA). Membranes were incubated with antigen
pretreatment buffer (ThermoFisher Scientific) for 10 min at room tem-
perature. Following pretreatment, membranes were blocked with Su-
perBlock blocking buffer (ThermoFisher Scientific) for 1 h at room

temperature. Primary antibodies of interest were anti-AT1Rs (Abcam
ab124734 1:1000), anti-MasRs (Novus NBP1-78444 1:1000), anti-CD31
(Abcam ab24590 1:1000), and anti-citrate synthase (Santa Cruz sc-
390693 1:1000). Membranes were incubated with Alexa Fluro 800 IgG
secondary, scanned, and analyzed using an infrared imager (LI-COR
Bioscience) using Odyssey 2.1 software. All Western blot images were
normalized to total protein using REVERT Total Protein (Li-core) which
has been shown to be superior for Western blot normalization as
compared with the use of housekeeping proteins.>> Note that anti-CD31,
a biomarker of vascular tissue was used to ensure that single muscle fiber
samples were not contaminated with vascular tissue. Importantly,
membranes imaged for AT1R and MasR protein were then probed for
CD31 to ensure that the single fiber homogenates were not contaminated
with vascular tissue. Furthermore, anti-citrate synthase was used as a
biomarker of mitochondrial density to confirm the exercise-induced in-
crease in mitochondrial density in skeletal muscle fibers.
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Fig. 3. AT1Rs protein abundance was measured via Western blotting. Compared to sedentary control, endurance exercise training does not significantly decrease
AT1R protein abundance in isolated single muscle fibers of the A) diaphragm, B) plantaris, and C) soleus muscles (p > 0.05). Values are mean + SD. ATIR =
angiotensin II type I receptors; CON = Sedentary control; EX = Endurance exercise training.

ATIRs fluorescence-based binding assay

Measurement of fluorescent AnglI ligand-binding to AT1Rs provides a
powerful experimental tool to determine the abundance of AT1Rs in
tissue samples. Therefore, fluorescently labeled AngIl methods were
adapted from previous reports to evaluate AT1R abundance.>®*” Skeletal
muscle cross sections from the costal diaphragm, plantaris, and soleus
muscles were evaluated for AT1Rs, as previously demonstrated by
Deminice et al.>* Briefly, diaphragm, plantaris, and soleus muscle sam-
ples were embedded in OCT and placed in —80 °C. Samples were then
transversely cut to 7 separate 10 pm thick sections using the cryotome
(Shandon, Pittsburg, PA). Then, slides containing the tissue sections were
incubated at 4 °C to dry for 45 min. After drying, all sections of muscle

151

tissue were incubated in Hanks’ Balanced Salt solution (Thermo Fisher,
#14025076) supplemented with protease inhibitor buffer (containing
0.1% bacitracin, Sigma B0125), 0.002% phenylmethylsulfonyl fluoride
(Sigma 78830), and 0.01% 1,10-phenanthroline (Sigma 131377) for 30
min on ice. Each slide was then dried for 5 min and prepared for staining.
The 7 sections from each muscle tissue sample were divided and incu-
bated in 3 different incubation medias. Three sections were incubated
with the fluorescently labeled Angll (TAMRA-labeled Ang II peptide;
Anaspec AS-60275-1) for 1 h. The other 3 sections were incubated with
fluorescently labeled AnglIl and the AT1Rs blocker losartan (Sigma CAS
124750-99-8) for 1 h. The last section of tissue served as the negative
control and was incubated with only non-fluorescently labeled AngIl
(Sigma A9525) for 1 h. Following incubation, each of the sections were
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Fig. 4. To eliminate the risk of contamination of vascular tissue, we isolated
single muscle fibers to determine RAS receptor abundance. CD31 was used as a
biomarker for vascular tissue via Western blot. CD31 was not detected in iso-
lated single fiber muscles of A) diaphragm, B) plantaris, and C) soleus. The
expected molecular weight of CD31 is approximately 120 kDa. MW = molecular
weight marker; CON = control; EX = exercise.
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washed with buffer assay and dried for imaging. An Axiovert 200
Inverted Fluorescence Microscope (Zeiss, Germany) was used to image
each section at 100x and 200x magnification using a rhodamine excita-
tion fluorescence filter. For AT1R quantification, the auto local thresh-
olding technique®® was used to quantify relative fluorescence density in
the AT1R binding sections using ImageJ software (National Institutes of
Health, USA).>* Relative AT1R values were generated by subtracting
background fluorescence (the value of threshold fluorescence detected in
the presence of losartan and co-incubated with TAMRA-labeled Ang II
from sectioned tissues from the same sample) from total threshold fluo-
rescence (fluorescence detected with TAMRA-labeled Ang II without
losartan). All measurements were made in triplicate. This technique was
established in previous experiments confirming the existence of AT1Rs in
both human and rat skeletal muscles compared with other tissues known
to express high levels of AT1R.>*

Statistical analysis

The group size (n = 10) was determined by a statistical power analysis
using data from previous studies. Data were analyzed by an independent
t-test and Shapiro-Wilk normality test conducted separately on each
dependent measure. Data are presented as mean + standard deviation
(SD). Significance was established at p < 0.05.

Results
Exercise training and body weights

All animals in the exercise group successfully completed the 10-days
of treadmill exercise training. Similar to previous studies utilizing this
exercise training protocol,* our results demonstrated no mean differences
in animal body weights between experimental groups (CON = 313.2 +
6.4 g, EX = 303.1 + 3.4 g).

Mitochondrial volume increased with exercise training

To confirm that our endurance exercise training program was suffi-
cient to promote training adaptations in skeletal muscle, we measured
citrate synthase as a biomarker of mitochondrial density. Compared to
sedentary control, 10 days of endurance exercise training significantly
increased citrate synthase protein abundance in the diaphragm (p =
0.0168), plantaris (p < 0.0001), and soleus muscles (p < 0.0001) (Fig. 2).

Endurance exercise training does not alter the protein abundance of AT1Rs
in skeletal muscle fibers

To determine if endurance exercise training decreases AT1Rs protein
abundance in skeletal muscle, we measured the protein abundance of
AT1Rs via Western blot in isolated skeletal muscle fibers. Compared to
sedentary control animals, 10 days of endurance exercise training did not
alter the abundance of AT1Rs in isolated diaphragm, plantaris, and soleus
muscle fibers (Fig. 3).

Importantly, preliminary experiments optimizing the single fiber
technique utilized the heart, liver, and kidney as positive controls for
CD31 (protein biomarker unique in vascular tissue; around 120 kDa)
demonstrating a strong single band at the expected molecular weight and
confirmed that the single muscle fiber homogenates were not contami-
nated with vascular tissue (data not shown). Similar to our preliminary
experiments, vascular contamination did not exist in the homogenate
from isolated fibers when measuring the abundance of CD31 in isolated
single muscle fiber homogenate. Our single fiber isolation technique was
successful in eliminating vascular contamination as CD31 was not
detectable in homogenate of isolated diaphragm, plantaris, and soleus
muscle fibers (Fig. 4).
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Fig. 5. Fluorescently labeled Angll was used as a functional measurement of AT1R abundance in skeletal muscle fibers. Panel (A) contains representative images
compared to sedentary control, endurance exercise training does not significantly decrease the abundance of AT1Rs in diaphragm, plantaris, and soleus muscles.
Images a-f depict representative images of Angll TAMRA-labeled cross sections of diaphragm, plantaris, and soleus. Images g-i depict negative control images of AngII
TAMRA-labeled + Losartan cross sections of diaphragm, plantaris, and soleus. Panel (B) contains AT1R quantification of fluorescence of Angll TAMRA-labeled cross
sections of control and exercise diaphragm, plantaris, and soleus relative to control. Angll = angiotensin II; AT1Rs = angiotensin II type I receptor; CON = Sedentary

control; EX = Endurance exercise training.

Endurance exercise training does not alter Angll binding capacity in skeletal
muscle fibers

In addition to Western blotting for AT1Rs protein abundance in iso-
lated muscle fibers, we employed a quantitative fluorescent-ligand
binding assay to determine the abundance of AT1Rs in skeletal muscle
fibers. This sensitive binding assay provides a physiological biomarker of
the functional presence of AT1Rs. First, TAMRA-labeled AnglI was used
to determine the location and abundance of AT1Rs in the diaphragm,
plantaris, and soleus muscles. Our results confirm that, compared to
sedentary control animals, endurance exercise training does not signifi-
cantly alter the abundance of AT1Rs in diaphragm, plantaris, and soleus
muscle fibers (Fig. 5). To confirm that the fluorescent signal in the muscle
was due to the TAMRA-labeled Angll, muscle sections were incubated
with losartan to prevent the binding of TAMRA-labeled AnglI to AT1Rs
which resulted in diminished intensity of the fluorescence (Fig. 5).

Endurance exercise training does not alter the protein abundance of MasRs
in skeletal muscle fibers

To determine if endurance exercise training alters the abundance of
MasRs in skeletal muscles, we measured the protein abundance of MasRs
in skeletal muscle fibers via Western blotting. Compared to sedentary
controls, endurance exercise training does not significantly increase the
abundance of MasRs protein in diaphragm, plantaris, and soleus muscle
fibers (Fig. 6). Note that an angiotensin 1-7 (Angl-7) binding assay for
MasRs was not performed because a fluorescent label for Ang1-7 does not
exist and the commercially available antibody against MasRs has been
validated as being specific for the MasRs protein.

Discussion
Overview of principal findings

These experiments provide important information about the mecha-
nisms responsible for exercise preconditioning of skeletal muscles.

Specifically, our findings establish that exercise preconditioning of
skeletal muscles is not dependent upon changes in the abundance of both
AT1Rs and MasRs. A critique of our experimental approach and a dis-
cussion of the significance of these findings follows.

Critique of experimental model

The current experiments differ significantly than the studies previ-
ously mentioned investigating the effect of exercise on RAS receptors in
skeletal muscles. In regard to sex differences, the previous studies
investigating the exercise-induced adaptations to RAS receptors utilized
adult male rodents while the current experiment utilized female
rodents.?! 2% It is important to consider possible sex differences in RAS
receptor abundance in skeletal muscle due to numerous reports demon-
strating sex differences in RAS receptors in the kidneys of females and
males, with males having greater AT1R expression than females.>>*°
Therefore, it is also possible that sex differences exist in skeletal muscle
fibers and sex must be considered when investigating skeletal muscle
RAS receptors. We arbitrarily selected adult female Sprague-Dawley rats
as a model to investigate the effects of endurance exercise training on the
RAS in skeletal muscle because this species/strain is a well-established
model to investigate exercise-induced adaptations in skeletal muscles.*!

The exercise protocol in this experiment also differs in exercise
duration, intensity, and type. Animals in previous studies were pre-
scribed voluntary wheel running for 6 weeks?"??> while others utilized
8-12 weeks of treadmill exercise running at 60% VOsnyax 60min/day 5
clays/week.9’23 The exercise protocol used in this experiment was
selected because previous experiments confirm that this training pro-
gram results in the rapid acquisition of an exercise preconditioned
phenotype in skeletal muscle that is protected against both
ventilator-induced diaphragm wasting and contraction-induced oxida-
tive stress.®*>*3 However, as scene in the previous studies, a longer
training duration may be necessary to facilitate adaptations of RAS re-
ceptors in skeletal muscle fibers.

To prevent contamination of muscle fibers with non-muscle tissue, we
measured the abundance of AT1Rs and MasRs within isolated single
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Fig. 6. MasR protein abundance was measured via Western blotting. Compared to sedentary control, endurance exercise training does not significantly increase MasR
protein abundance in isolated single muscle fibers of the A) diaphragm, B) plantaris, and C) soleus muscles (p > 0.05). CON = Sedentary control; EX = Endurance

exercise training; MasR = Mas receptor.

muscle fibers. Importantly, we confirmed that our single fiber muscle
homogenate was not contaminated with vascular tissue by probing for
the vascular biomarker, CD31; notably, CD31 was absent from all single
fiber muscle homogenates. Indeed, the abundance of RAS receptors
within the microvasculature of skeletal muscles has been established and
may play an important role in skeletal muscle function.***° Evidence in
the heart demonstrates an important paracrine signaling between the
microvasculature and cardiomyocytes on regulating and maintaining
cardiac function.”” Therefore, it is possible that the skeletal muscle
microvasculature may also play an important role in skeletal muscle
function and could be an important system in exercise preconditioning of
skeletal muscles.

When measuring the abundance of AT1Rs in skeletal muscle, cautious
selection of AT1Rs antibodies is essential because numerous commer-
cially available AT1Rs antibodies lack specificity.>#*® To avoid this
pitfall, we carefully screened available AT1Rs antibodies and selected an
antibody that provided a clear, single Western blot band at the expected
molecular weight of AT1Rs (43 kDa). Moreover, to further confirm the
specificity of the antibody, we performed experiments on single muscle
fibers and tissue types with an abundant amount of AT1R. (i.e., heart,
liver, and kidney) from animals with decreased expression of AT1Rs in
skeletal muscles. AT1R expression was silenced via adeno-associated
virus containing a short-hairpin RNA specifically targeting skeletal
muscle tissue using a muscle specific promoter. These studies confirmed a
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reduction of AT1Rs protein abundance in only skeletal muscles from the
AT1Rs knock-down animals compared to wild type in a dose-dependent
manner and did not impact AT1R abundance in the heart, liver, and
kidney (unpublished). Together, these data support the specificity of the
ATIR antibody utilized in these experiments.

In addition to Western blot analysis of AT1Rs abundance in muscle
fibers, we also used an in vitro Angll binding assay as a secondary tech-
nique to assess AT1Rs abundance in skeletal muscle fibers. The specificity
of the binding assay was confirmed by incubation of muscle sections with
the AT1Rs blocker, losartan. Importantly, the inclusion of a binding assay
provides additional strength to our experimental approach to determine
if endurance exercise training alters the abundance of AT1Rs in skeletal
muscle.

We measured the abundance of AT1Rs in 3 skeletal muscles including
the primary inspiratory muscle (diaphragm) and 2 limb muscles (plan-
taris and soleus). The diaphragm is a mixed fiber type muscle that con-
tains a blend of fast and slow fibers>>*® and was studied because
activation of the classical arm of the RAS promotes diaphragmatic atro-
phy during prolonged mechanical ventilation.2° Furthermore, activation
of the non-classical RAS pathway via Angl-7 infusion attenuates
ventilator-induced diaphragm dysfunction.'® It follows that an
exercise-induced change in the abundance of AT1Rs and/or MasRs is a
potential mechanism to explain why exercise training prevents
ventilator-induced diaphragmatic wasting. In addition, evidence suggest
dysregulated RAS signaling may play a role in skeletal muscle wasting
conditions (i.e., hindlimb immobilization), therefore, the plantaris and
soleus muscles were also studied.?®

Exercise-induced adaptations does not include changes in RAS receptor
abundance in skeletal muscle

Currently, there are only 2 reports that demonstrated a decrease in
AT1Rs and an increase in MasRs protein expression in rat skeletal mus-
cle.®?® Gomes-santos et al. performed exercise training in a model with a
pathological increase in classical RAS signaling (i.e., chronic heart fail-
ure), however, healthy exercised control animals demonstrated an in-
crease in MasR mRNA in only soleus muscles which may be due to
adaptations within the vascular beds within the soleus.’ Similarly, Frantz
et al. suggested that exercise training results in a shift of the RAS axis to
favor the non-classical RAS in skeletal muscles from obese animals,
however, they did not include a healthy exercise trained group of ani-
mals.?® Ultimately, it remains unclear if exercise preconditioning results
in a shift of RAS receptors in healthy skeletal muscle tissues and not due
to adaptations within the microvasculature.

Conclusions

This study provides the first robust evidence that endurance exercise
training does not modify the expression of AT1Rs or MasRs in skeletal
muscle fibers. These results are important because they reject the
postulate that exercise-induced changes in RAS receptors are a mecha-
nism to explain exercise preconditioning in skeletal muscles. By con-
firming that endurance exercise training does not change the abundance
of RAS receptors in skeletal muscle, these results direct future studies
toward alternative mechanisms that contribute to exercise pre-
conditioning in skeletal muscles.
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